Recall Distortion in Neural Network Pruning and the Undecayed Pruning Algorithm
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1. Problem Statement 3. What Affects the Intensification Ratio?
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4. Undecayed Pruning vs Magnitude Pruning

Does pruning induce an intensification effect on neural network Superscripts <, >, or ? denote where 99% CIs were below 1, above 1, or overlapped 1. To better determine the impact of parameters for pruning, we propose a
models that causes a distortion in their recall performance? MP is magnitude, GP is gradient, UP is undecayed, and RP is random pruning. combination of magnitude and gradient pruning:
Intensification Effect: 1. How does pruning strategy affect the intensification ratio? UP = GP + eMP
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(dataset) affect this intensification effect? We observe an intensification effect for all pruning strategies except RP. Re_s)Nl\e{‘;f“
2 Definitions 2. How does task complexity affect the intensification ratio?
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Where A(m) is accuracy for model m, R°(m) is recall for class ¢, and t is Z " " - R~ — UP
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Let the normalized recall balance be denoted by: As datasets get more complex, we see higher intensification per pruning rate.
B (m) = Bf(m)  Ri(m)— Ai(m) 3. How does model size affect the intensification ratio? reARD
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Let the intensification ratio be denoted by: T | —— e e R o SE——— L %f%% --------- - better accuracy (A), at the same pruning rate.
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C(m) = Bf(m)  Normalized recall balance after pruning RP has the lowest intensification ratio of them all, implying that it heavily reduces
t T

= , , Smaller model sizes show more intensification per pruning rate. recall distortion, but the model accuracies are below any usable threshold.
B¢(m)  Normalized recall balance before pruning

. .. _ _ _ 4. How does undecayed pruning perform? -
This metric is used to evaluate if pruning widens the performance gap CIFAR-10 @ ResNet-20 — UP  CIFAR-10 @ ResNet-32 — UP  CIFAR-10 @ ResNet-44 — UP  CIFAR-10 @ ResNet-110 — UP 5 : ConCluSlon

between classes, and our focusisonif E[| I ] =1 (no intensification) or . .. e . . .
{fE[ I]<> 1, then we can analyse when EE[ I]] N 1( (intensification) b)ut o e We find statistically significant evidence for I >1 at high pruning rates.
| h E 11<1 (de-i £ ES e Different pruning strategies have different effects, with UP performing best.
also when E| I ] < 1 (de-intensification). 3 — 21| . 2] _
£ o = — . e More complex tasks and smaller model sizes tend to have
& is the slope of the linear regression of Bf(m)on B¢(m), giving a & = == | = — L — ] = higher I at same pruning rates.
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weighted mean of I;’(m) (across c for a given m and t). ? %f 10> 20° 50° Y T 10> 20° 50° = ?L‘E 20° 50° 5 = 10 3%: . e Atlow pruning rates (t <= 4) we see a de-intensification effect. |
For boxplots, means below 1 (dashed-line) show a de-intensification effect Comparing to boxplot 3, UP has less of an intensification effect than MP.

For scatter plots, slopes below 1 show a de-intensification effect



