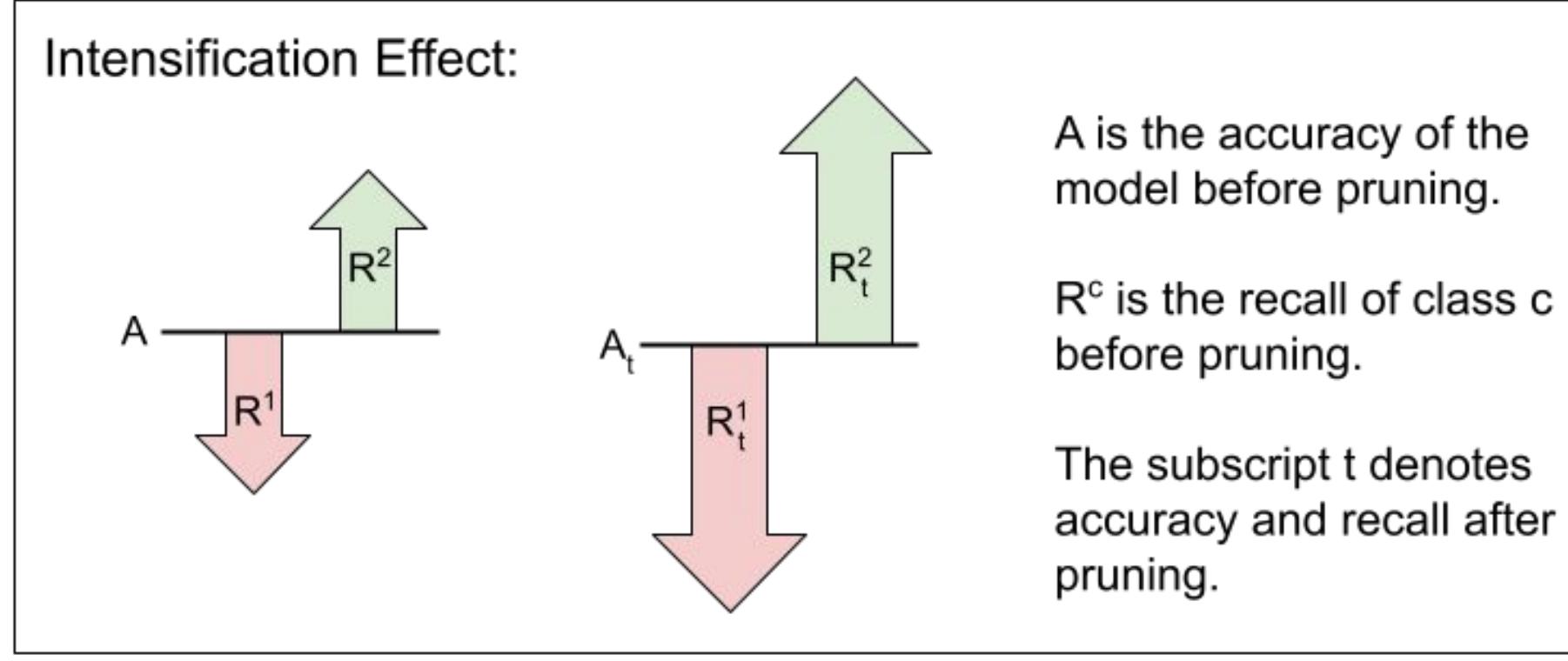


1. Problem Statement

Does pruning induce an **intensification effect** on neural network models that **causes a distortion in their recall performance**?



How does **pruning strategy, model size, and task complexity (dataset)** affect this intensification effect?

2. Definitions

Let the **recall balance** be denoted by:

$$B_t^c(m) = R_t^c(m) - A_t(m)$$

Where $A(m)$ is accuracy for model m , $R^c(m)$ is recall for class c , and t is the pruning ratio (default $t = 1$).

Let the **normalized recall balance** be denoted by:

$$\bar{B}_t^c(m) = \frac{B_t^c(m)}{A_t(m)} = \frac{R_t^c(m) - A_t(m)}{A_t(m)}$$

The further away this value is from 1, the more pronounced the difference in performance is between class c and the other classes in model m at the pruning ratio t .

Let the **intensification ratio** be denoted by:

$$I_t^c(m) := \frac{\bar{B}_t^c(m)}{\bar{B}^c(m)} \equiv \frac{\text{Normalized recall balance after pruning}}{\text{Normalized recall balance before pruning}}$$

This metric is used to evaluate if pruning widens the performance gap between classes, and our focus is on if $E[I] = 1$ (no intensification) or if $E[I] > 1$, then we can analyse when $E[I] > 1$ (intensification) but also when $E[I] < 1$ (de-intensification).

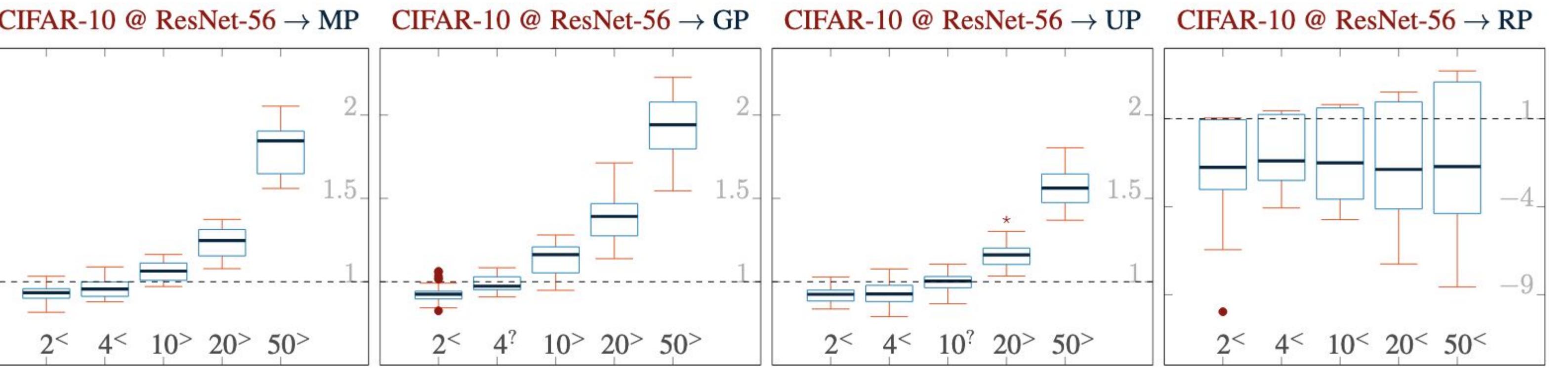
$\hat{\alpha}$ is the slope of the linear regression of $\bar{B}_t^c(m)$ on $\bar{B}^c(m)$, giving a weighted mean of $I_t^c(m)$ (across c for a given m and t).

For boxplots, means below 1 (dashed-line) show a de-intensification effect. For scatter plots, slopes below 1 show a de-intensification effect.

3. What Affects the Intensification Ratio?

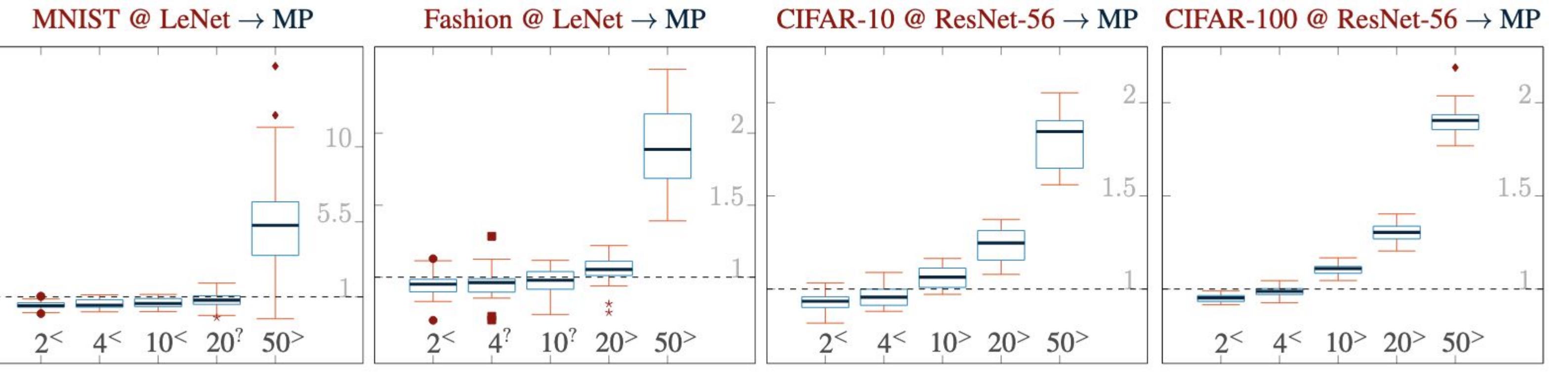
Superscripts <, >, or ? denote where 99% CIs were below 1, above 1, or overlapped 1. MP is magnitude, GP is gradient, UP is undecayed, and RP is random pruning.

1. How does pruning strategy affect the intensification ratio?



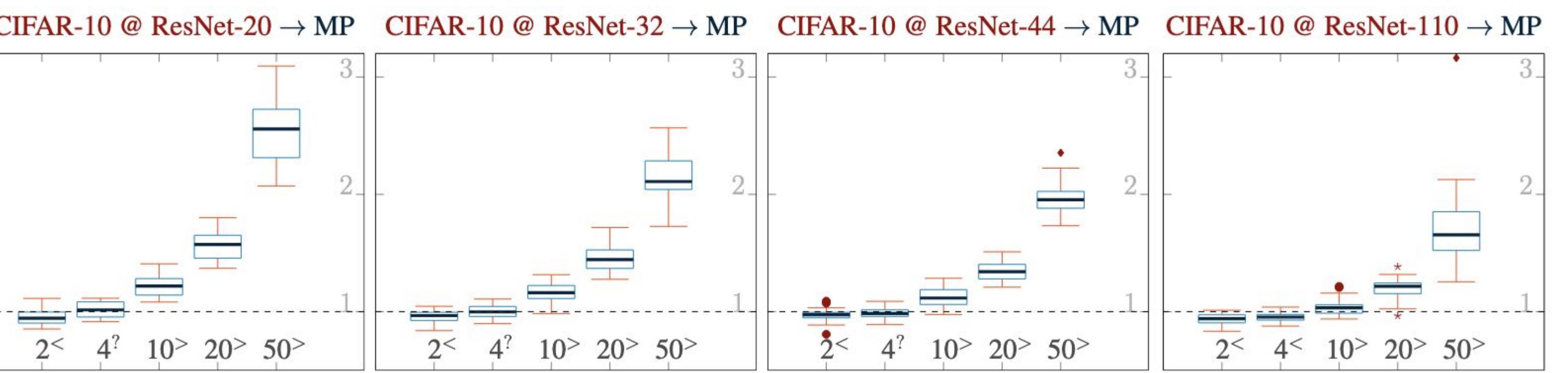
We observe an intensification effect for all pruning strategies except RP.

2. How does task complexity affect the intensification ratio?



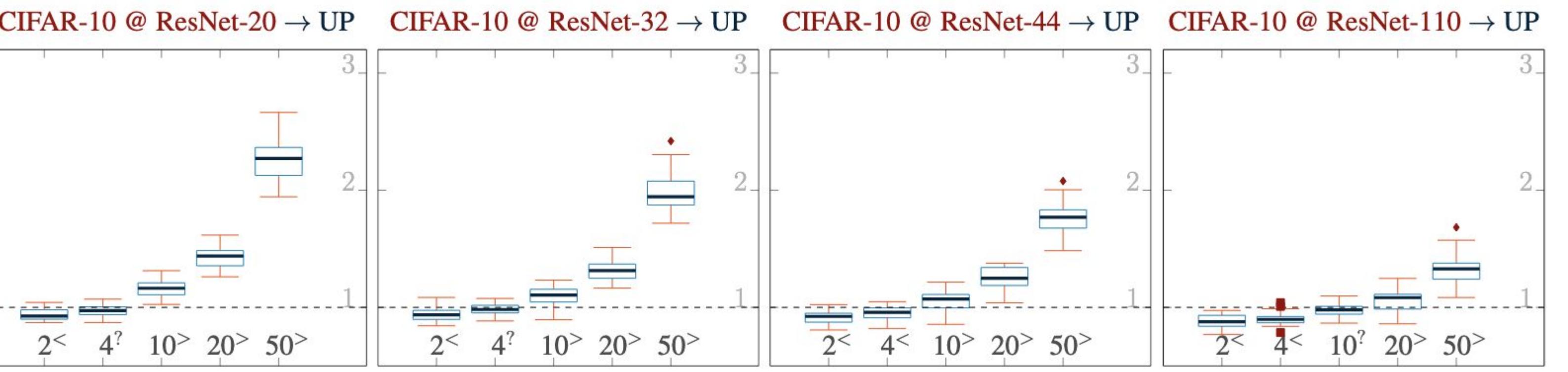
As datasets get more complex, we see higher intensification per pruning rate.

3. How does model size affect the intensification ratio?



Smaller model sizes show more intensification per pruning rate.

4. How does undecayed pruning perform?



Comparing to boxplot 3, UP has less of an intensification effect than MP.

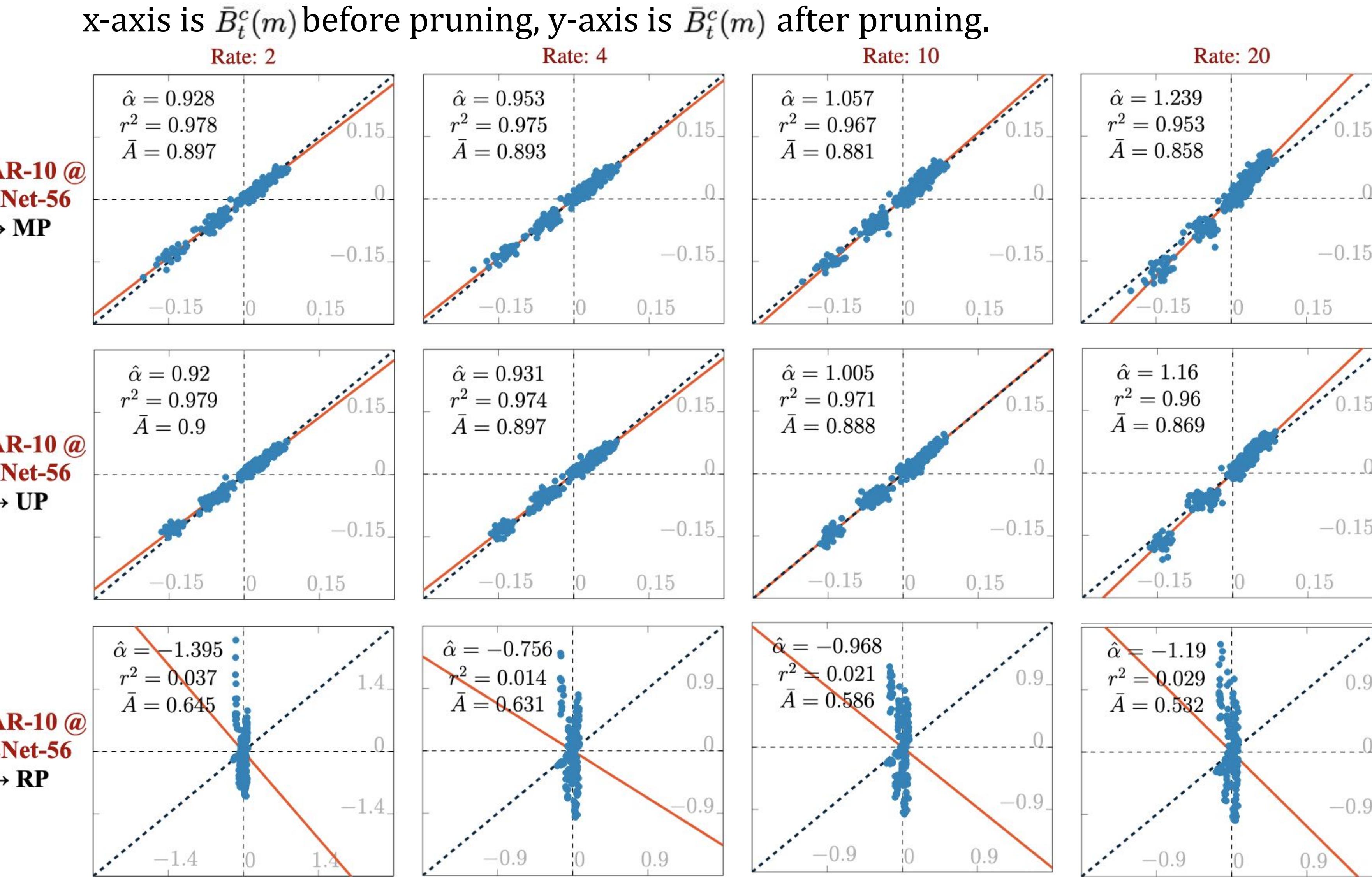
4. Undecayed Pruning vs Magnitude Pruning

To better determine the impact of parameters for pruning, we propose a combination of magnitude and gradient pruning:

$$UP = GP + \epsilon MP$$

Where ϵ is the weight decay hyperparameter.

To determine its effectiveness, we compare it with MP and include RP:



We find that **UP** has a **smaller mean intensification ratio** ($\hat{\alpha}$) than **MP**, while having **better accuracy** (\bar{A}), at the same pruning rate.

RP has the **lowest intensification ratio** of them all, implying that it heavily reduces recall distortion, but the model accuracies are below any usable threshold.

5. Conclusion

- We find statistically significant evidence for $I > 1$ at high pruning rates.
- Different pruning strategies have different effects, with **UP performing best**.
- More complex tasks and smaller model sizes tend to have **higher I at same pruning rates**.
- At **low pruning rates ($t \leq 4$)** we see a **de-intensification effect**.

